Quantification of Software Changes through
Probabilistic Symbolic Execution

2, and Guowei Yang?

Antonio Filieri!, Corina S. Pasareanu
1 University of Stuttgart, Stuttgart, Germany

2 Carnegie Mellon Silicon Valley, NASA Ames, Moffet Field, CA, USA
3 Texas State University, San Marcos, TX, USA

—— Abstract

Characterizing software changes is a fundamental component of software maintenance. Despite
being widely used and computationally efficient, techniques that characterize syntactic program
changes lack an insight on the changed program behaviors and can possibly lead to unnecessary
maintenance efforts. Recent promising techniques use program analysis to produce a behavioral
characterization of program changes, see e.g. [10, 12]. Behaviors are either abstracted through
operational models (e.g., transition systems) or summarized through a set of logical formulae
satisfied by the input-output relation (e.g., pre- and post- conditions). Checking the implication

or the equivalence between the abstraction of different program versions provides a qualitative
assessment of the preservation of desired behaviors or the elimination of undesired behaviors.
Nonetheless, such qualitative assessment provides only true-false answers, providing limited guid-
ance on “how far” two versions are different from one another. Recent work [8, 9] provides
more informative but still only qualitative representation of the difference. We argue that a com-
plementary quantitative representation for software changes is needed, particularly for programs
required to operate under uncertainty usage profiles, where the goal of maintenance is to improve
the average quality of the program instead of its worst-case performance.

In this work, we propose to compute a precise numeric characterization of a program change
by quantifying the likelihood of reaching program events of interest (e.g. successful termination
or assertion violations) and how that evolves in time, with each program version. Furthermore,
our approach quantifies the percentage of inputs that are affected by each change. Such precise
characterization of behavioral changes can be used to rank different program versions based on
the execution probability of the changes and their impact on the probability of satisfying or
failing desirable properties, under an uncertain usage profile.

With this new quantitative approach we are able state not only that the program has changed
with a logical delta, as in the previous qualitative approaches, but we can also compute that
delta affects say 30% of the program inputs, giving a clear, measurable indication for the effort
necessary to re-test the program modifications.

Furthermore, after fixing a bug, existing qualitative techniques can only assess whether the
new version is free of errors or not, which may be too restrictive for most realistic applications.
Instead, with our approach we can quantify the probability of reaching an error in the old and
new versions, expecting it to decrease with each new bug fix. In yet another scenario, consider
the case of multiple candidate repairs for a given bug: our technique can be used to automatically
rank them according to their probability of execution or the overall probability of failure.

The approach extends probabilistic symbolic execution [6, 4] to compute the symbolic con-
straints that characterize program paths in different program versions. Solution space quantifica-
tion techniques [3, 1] over the collected constraints are used to precisely quantify the percentage
of inputs leading to the occurrence of a target event that are affected by a change (approxi-
mate quantification with probabilistic precision guarantees has also been explored to cope with
larger programs [7, 5]). Furthermore, our approach exploits the fact that program versions are
largely similar to reduce cost and improve the precision of analysis by storing and reusing partial

m licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Quantification of Software Changes through Probabilistic Symbolic Execution

analysis results from previous versions [13]. Our quantitative measures are different from simula-
tion distances [2] which are real-valued functions between two high-level models (a specification
and an implementation), computed using quantitative simulation games. In contrast we focus
on different versions of the same system, analyzing directly code (not high-level models), using
probabilistic techniques.

We have implemented our approach in the Symbolic PathFinder tool [11] and performed an
exploratory study that considers version histories of Java code bases, under common software
maintenance scenarios such as evaluating different program repairs, performing refactoring, or
evaluating different mutants used in testing. The preliminary results show a promising application
scope for our technique.

Acknowledgements

This work is partly supported by NSF Awards CCF-1329278 and CCF-1319858.

—— References

1 Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Pasareanu, and Willem
Visser. Compositional solution space quantification for probabilistic software analysis. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 123-132. ACM, 2014.

2 Pavol Cerny, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation distances. In
Proceedings of the 21th International Conference on Concurrency Theory, volume LNCS
6269 of CONCUR ’10, pages 253-268. Springer, 2010.

3 Jests A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. Journal of Symbolic Computation,
38(4):1273-1302, October 2004.

4 Antonio Filieri, Corina S. Pasareanu, and Willem Visser. Reliability analysis in Symbolic
Pathfinder. In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 622-631. IEEE Press, 2013.

5 Antonio Filieri, Corina S. P#sareanu, Willem Visser, and Jaco Geldenhuys. Statistical
symbolic execution with informed sampling. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE '14, pages 437-448.
ACM, 2014.

6 Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. Probabilistic symbolic execution.
In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 12, pages 166-176. ACM, 2012.

7 Kasper Luckow, Corina S. Pasareanu, Matthew Dwyer, Antonio Filieri, and Willem Visser.
Exact and approximate probabilistic symbolic execution for nondeterministic programs. In
Proceedings of the 2014 29th IEEE/ACM International Conference on Automated Software
Engineering, ASE 14, pages 575-586. ACM, 2014.

8 Nimrod Partush and Eran Yahav. Abstract semantic differencing for numerical programs.
In Proceedings of the 20th International Static Analysis Symposium, volume LNCS 7935 of
SAS ’18, pages 238-258. Springer, 2013.

9 Nimrod Partush and Eran Yahav. Abstract semantic differencing via speculative correlation.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA '14, pages 811-828. ACM, 2014.

10 Suzette Person, Matthew B. Dwyer, Sebastian G. Elbaum, and Corina S. Pasareanu. Dif-
ferential symbolic execution. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 08, pages 226-237. ACM, 2008.

Antonio Filieri, Corina S. Pasareanu, and Guowei Yang

11

12

13

Corina S. Pasareanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter Mehlitz, and
Neha Rungta. Symbolic PathFinder: integrating symbolic execution with model checking
for Java bytecode analysis. Automated Software Engineering, 20(3):391-425, 2013.
Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. Directed incremen-
tal symbolic execution. ACM Transactions on Software Engineering and Methodology,
24(1):3:1-3:42, 2014.

Guowei Yang, Corina S. Pasareanu, and Sarfraz Khurshid. Memoized symbolic execution.
In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA ’12, pages 144-154. ACM, 2012.

