
Korz: Envisioning a Paradigm for Dynamic
Multidimensional Contextual Variation
(Extended Abstract)
David Ungar1, Harold Ossher2, and Doug Kimelman2

1 IBM Research, San Jose, CA, USA
davidungar@us.ibm.com

2 IBM Research, Yorktown Heights, NY, USA
{ossher,dnk}@us.ibm.com

Object-oriented inheritance graphs work well as long as each entity has only one dimension
of variation. Sadly, as soon as a second dimension of variation is required, the object-oriented
programmer is forced to resort to the visitor pattern, strategy pattern, or an aspect-oriented
methodology, each requiring a cumbersome refactoring. In addition to the time spent splitting
and refactoring, aspect-oriented, feature-oriented and related approaches increase effort by
complicating the object model with additional modularity constructs to encapsulate concerns
that do not align with the dominant dimension, and the means to compose or weave them.

Moreover, modern services and applications are becoming increasingly context-aware:
they must adapt their behavior to the context in which they are running, and that context
can change dynamically. For example, many applications on mobile devices are location-
sensitive, and change the information they show, and/or their behavior, as location changes.
Programming software that can adapt to context is challenging, especially when that context
can change during execution. Each user has a unique context, and many different dimensions
of context come into play simultaneously, such as who the user is, what his or her access
rights and preferences are, what kind of device is being used for interaction, etc. There is
a growing need for a programming paradigm that provides for multidimensional, dynamic,
contextual variation.

Korz is a new computational model that combines implicit arguments and multiple
dispatch in a slot-based model. This synthesis enables the writing of software that supports
contextual variation along multiple dimensions, and graceful evolution of that software to
support new, unexpected dimensions of variability, without the need for additional mechanism
such as layers or aspects. Rather than bog down the object-oriented model with additional
concepts such as layers, Korz provides a more fine-grained model out of which subjective
objects can emerge.

A Korz system consists of a sea of method and data slots in a multidimensional space.
There is no fixed organization of slots into objects – a slot pertains to a number of objects
instead of being contained in a single object – and slots can come together according to the
implicit context in any given situation, yielding subjective objects. There is no dominant
decomposition, and no dimension holds sway over any other. IDE support is essential for
managing complexity when working with the slot space and with subjectivity, allowing the
task at hand to dictate what subspaces to isolate and what dominance of dimensions to use
when presenting nested views to the user.

Computation occurs in a context, which is also multidimensional, binding specific values
to some or all of the dimensions in the slot space. At each computation step, a slot is selected
from the space, using multiple dispatch that is based on the context, a selector, and explicit
arguments, and then that slot is evaluated. The context is implicitly passed along to this
evaluation, and hence serves as a set of implicit arguments.

Korz reduces to procedural programming in the zero-dimensional case, and object-oriented
© IBM;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Korz: Envisioning a Paradigm for Dynamic Multidimensional Contextual Variation

programming in the one-dimensional case (the single, implicit context element being the “self”
or “this” object). We believe Korz to be simpler, more flexible, more dynamic, and more
expressive than previous approaches, particularly for evolving a program when additional
kinds of variation arise.

We have built and exercised a prototype Korz implementation using the Self language,
virtual machine and environment. Our Korz prototype includes an interpreter, debugger,
and a partial interactive development environment (IDE). The syntax used in the prototype
is based on Self syntax. This early experience has revealed much that needs to be done, but
has also shown considerable promise.

Korz’s contribution lies in combining a relatively small number of pre-existing concepts:
multiple dispatch, implicit, symmetric, named arguments, and slots with unified state and
behavior as the fundamental particle. This combination yields more than the sum of the parts.
Multiple dispatch supports multiple dimensions of variation, implicit arguments support
evolution and contextual programming, and the slot-based metaphor allows for subjective
gathering of slots into different “objects” for different situations. Together, they allow a
program to be easily extended to accommodate new kinds of variation and new perspectives.
In addition to accommodating ordinary programming tasks, and contextual variation for
services and applications, this extensibility may also enable better architectures for reflection
and more flexible and unified type systems.

This abstract is based on: Korz: Simple, Symmetric, Subjective, Context-Oriented
Programming [1].

References
1 David Ungar, Harold Ossher, and Doug Kimelman. Korz: Simple, symmetric, subjective,

context-oriented programming. In Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software, Onward! 2014,
pages 113–131, New York, NY, USA, 2014. ACM.


